Arborescence des pages
ConfigureOutils de l'espace
Aller directement à la fin des métadonnées
Aller au début des métadonnées

TCSS5AA: Mathématiques 1: Analyse numérique

Durée : 30 heures

Crédits : 3.5 ECTS 

Semestre : S5

Responsable(s) :

Antoine Henrot, Professeur, antoine.henrot@mines-nancy.univ-lorraine.fr

Mots clés :

analyse numérique, simulation, calcul scientifique, algorithmes

Pré requis : 

les mathématiques des classes préparatoires (quelle que soit la filière)

Objectif général :

Ce cours est destiné à donner les bases de l’étude et de l’analyse de méthodes numériques utiles pour les sciences de l’ingénieur. Divers sujets seront abordés en cours magistral et mis en pratique lors de séances de travaux dirigés sous l’environnement Matlab. Des applications sur des problèmes concrets seront notamment développées afin de mettre en évidence l’importance de la maîtrise de la simulation numérique, de la théorie à la pratique, pour l’ingénieur.

Programmes et contenus :

Séance 1: les erreurs en analyse numérique

Les différents types d'erreurs. La propagation des erreurs (perte de chiffres significatifs, erreur de chute). Notion de conditionnement et de stabilité.

Séance 2: Interpolation et approximation des fonctions

Interpolation de Lagrange, formules de Newton (différences divisées). Formules d'erreur. Approximation uniforme et au sens des moindres carrés, fonctions splines cubiques.

Séance 3: Intégration et dérivation numérique

Méthodes composites du type Newton-Cotes et méthodes de Gauss. Analyse de l'erreur. Dérivation numérique et formule d'erreur. Application à la résolution d'équations aux dérivées partielles par des méthodes de différences finies.

Séances 4 et 5: Equations différentielles

Quelques rappels théoriques. Résolution numérique des équations différentielles : méthodes à un pas, explicites et implicites (Euler, Crank-Nicholson, Runge-Kutta). Méthodes multi-pas (Adams et ses variantes). Ajustement du pas. Notion de stabilité et convergence. Méthode de tir pour les problèmes aux limites.

Séance 6 et 7: résolution de systèmes linéaires

Méthodes directes : pivot de Gauss, factorisation LU et Choleski. Factorisation QR. Conditionnement d'une matrice et effet sur l'erreur. Méthodes itératives (Jacobi, Gauss-Seidel, relaxation, Gradient conjugué avec ou sans préconditionnement). Convergence et comparaison des différentes méthodes.

Séance 8 et 9: Résolution d'équations non linéaires et optimisation

Les algorithmes classiques (dichotomie, sécante, Newton, point fixe) en dimension 1 et leur adaptation en dimension supérieure. L'étude de la convergence et la comparaison des algorithmes. Méthodes d'accélération de la convergence (Aitken, Steffensen). Optimisation sans contraintes, méthodes de gradient et gradient conjugué.

Compétences : 

Niveaux

Description et verbes opérationnels

Connaître 

Connaître et reconnaître les différentes situations qui conduisent à mettre en œuvre une méthode numérique. Connaître les formules d'erreur.

Comprendre 

Comprendre les erreurs commises quand on met en oeuvre des méthodes numériques et être capable de les maîtriser.

Appliquer 

Être capable de choisir les méthodes les plus adéquates pour résoudre un problème donné.

Analyser 

Détecter et déduire les propriétés de certains phénomènes numériques à l'aide de raisonnements mathématiques.

Synthétiser

Formuler et développer une réponse aux problèmes posés, organiser les résultats dans un tout cohérent, rigoureux et clair.

Évaluer

Juger de la pertinence d'un résultat et de sa véracité. Valider la justesse d'une méthode et d'un raisonnement.

Évaluations :

  • Test écrit
  • Contrôle continu
  • Oral, soutenance
  • Projet
  • Rapport
  • Aucune étiquette