Analyse Numérique

Première année

Xavier ANTOINE

Mines

2016-2017

Séance 8 : Résolutions des équations non linéaires

Introduction

• nous savons résoudre explicitement certaines équations.

nous savons résoudre explicitement certaines équations.
 par exemple l'équation

$$x^2 - x - 1 = 0$$

admet deux solutions : $\frac{1+\sqrt{5}}{2}$ et $\frac{1-\sqrt{5}}{2}$

nous savons résoudre explicitement certaines équations.
 par exemple l'équation

$$x^2 - x - 1 = 0$$

admet deux solutions : $\frac{1+\sqrt{5}}{2}$ et $\frac{1-\sqrt{5}}{2}$

• en revanche, si nous considérons l'équation

$$\cos x = x$$
,

une étude mathématique (laquelle?) nous indique qu'elle possède une unique solution comprise entre 0 et 1, mais nous ne pouvons pas l'exprimer de façon explicite.

nous savons résoudre explicitement certaines équations.
 par exemple l'équation

$$x^2 - x - 1 = 0$$

admet deux solutions : $\frac{1+\sqrt{5}}{2}$ et $\frac{1-\sqrt{5}}{2}$

• en revanche, si nous considérons l'équation

$$\cos x = x$$
,

une étude mathématique (laquelle?) nous indique qu'elle possède une unique solution comprise entre 0 et 1, mais nous ne pouvons pas l'exprimer de façon explicite.

• toutefois, pour faire du calcul numérique, une **approximation** de la solution sera suffisante avec si possible une estimation de l'erreur.

soit l'équation

$$f(x)=0$$

où f une fonction d'une variable réelle à valeur réelle.

soit l'équation

$$f(x) = 0$$

où f une fonction d'une variable réelle à valeur réelle.

• on suppose que cette équation admet (au moins) une racine r.

soit l'équation

$$f(x)=0$$

où f une fonction d'une variable réelle à valeur réelle.

- on suppose que cette équation admet (au moins) une racine r.
- l'idée est de construire une suite (x_n) qui converge vers r la solution de notre équation

soit l'équation

$$f(x)=0$$

où f une fonction d'une variable réelle à valeur réelle.

- on suppose que cette équation admet (au moins) une racine r.
- l'idée est de construire une suite (x_n) qui converge vers r la solution de notre équation
- ainsi par, définition de la convergence, le terme x_n de la suite sera une approximation de r, la précision dépendant du choix de n.

soit l'équation

$$f(x) = 0$$

où f une fonction d'une variable réelle à valeur réelle.

- on suppose que cette équation admet (au moins) une racine r.
- l'idée est de construire une suite (x_n) qui converge vers r la solution de notre équation
- ainsi par, définition de la convergence, le terme x_n de la suite sera une approximation de r, la précision dépendant du choix de n.

Question

comment construire cette suite (x_n) qui converge vers la solution de notre équation?

• décrire les méthodes numériques les plus fréquemment utilisées

- décrire les méthodes numériques les plus fréquemment utilisées
- étudier la convergence de ces méthodes

- décrire les méthodes numériques les plus fréquemment utilisées
- étudier la convergence de ces méthodes
- évaluer la performance de ces méthodes i.e. la vitesse de convergence des suites associées

- décrire les méthodes numériques les plus fréquemment utilisées
- étudier la convergence de ces méthodes
- évaluer la performance de ces méthodes i.e. la vitesse de convergence des suites associées
- adapter quelques méthodes pour traiter le problème plus général

$$f(x)=0$$

où f une fonction de \mathbb{R}^n dans \mathbb{R}^n et x un vecteur de \mathbb{R}^n .

Un peu d'analyse avant de commencer

$$f(x) = 0$$

où f une fonction d'une variable réelle à valeur réelle.

$$f(x) = 0$$

où f une fonction d'une variable réelle à valeur réelle.

Avant de mettre en oeuvre une méthode numérique, il convient (si possible) de

$$f(x)=0$$

où f une fonction d'une variable réelle à valeur réelle.

Avant de mettre en oeuvre une méthode numérique, il convient (si possible) de

• s'assurer que l'équation possède au moins une solution

$$f(x)=0$$

où f une fonction d'une variable réelle à valeur réelle.

Avant de mettre en oeuvre une méthode numérique, il convient (si possible) de

- s'assurer que l'équation possède au moins une solution
- déterminer le nombre de racines

$$f(x)=0$$

où f une fonction d'une variable réelle à valeur réelle.

Avant de mettre en oeuvre une méthode numérique, il convient (si possible) de

- s'assurer que l'équation possède au moins une solution
- déterminer le nombre de racines
- séparer les racines i.e. déterminer des intervalles $[a_i, b_i]$ dans lesquels l'équation considérée a une solution et une seule

Pour cela nous avons

Théorème des Valeurs Intermédiaires

Soient I un intervalle de \mathbb{R} , f une application de I dans \mathbb{R} , continue sur I. S'il existe deux éléments a et b de I tels que a < b et $f(a)f(b) \le 0$ alors il existe $r \in [a,b]$ tel que f(r)=0.

Pour cela nous avons

Théorème des Valeurs Intermédiaires

Soient I un intervalle de \mathbb{R} , f une application de I dans \mathbb{R} , continue sur I. S'il existe deux éléments a et b de I tels que a < b et $f(a)f(b) \le 0$ alors il existe $f \in [a,b]$ tel que f(f) = 0.

Théorème

Soient a et b deux réels tels que a < b et f une application de [a, b] dans \mathbb{R} , continue et strictement monotone sur [a, b]. Si $f(a)f(b) \leq 0$ alors il existe un unique f(a) = 0 tel que f(a) = 0.

Résoudre sur ${\mathbb R}$

$$x - 0.2\sin(x) - 0.5 = 0.$$

Résoudre sur R

$$x - 0.2\sin(x) - 0.5 = 0.$$

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = x - 0.2\sin(x) - 0.5$$

Résoudre sur $\mathbb R$

$$x - 0.2\sin(x) - 0.5 = 0.$$

Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = x - 0.2\sin(x) - 0.5$$

La fonction f est continue et dérivable sur $\mathbb R$ et comme nous avons pour tout x

$$f'(x) = 1 - 0.2\cos(x) > 0$$

cette fonction est aussi strictement croissante sur \mathbb{R} . De plus, comme

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{et } \lim_{x \to +\infty} f(x) = +\infty$$

nous en déduisons que f admet une unique racine sur \mathbb{R} .

Résoudre sur ${\mathbb R}$

$$x - 0.2\sin(x) - 0.5 = 0.$$

Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = x - 0.2\sin(x) - 0.5$$

plus précisément, comme

$$f(0) = -0.5 < 0$$
 et $f(\pi) = \pi - 0.5 > 0$

f admet une unique racine sur \mathbb{R} comprise entre 0 et π .

Résoudre sur ${\mathbb R}$

$$\cos(x) = e^{-x}.$$

Résoudre sur $\ensuremath{\mathbb{R}}$

$$\cos(x)=e^{-x}.$$

Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = \cos(x) - e^{-x}.$$

Résoudre sur $\mathbb R$

$$\cos\left(x\right)=e^{-x}.$$

Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = \cos(x) - e^{-x}.$$

La fonction f est continue et dérivable sur $\mathbb R$ et comme nous avons pour tout x

$$f'(x) = -\sin(x) + e^{-x}.$$

Résoudre sur R

$$\cos\left(x\right)=e^{-x}.$$

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \cos(x) - e^{-x}.$$

La fonction f est continue et dérivable sur \mathbb{R} et comme nous avons pour tout x

$$f'(x) = -\sin(x) + e^{-x}.$$

Il est donc difficile d'étudier le signe de f' et d'en déduire les variations de f, puisque nous retrouvons un problème "similaire".

Résoudre sur ${\mathbb R}$

$$\cos(x)=e^{-x}.$$

Considérons maintenant la fonction g définie sur $\mathbb R$ par

$$g(x) = e^x \cos(x) - 1$$

Résoudre sur $\mathbb R$

$$\cos(x) = e^{-x}.$$

Considérons maintenant la fonction g définie sur $\mathbb R$ par

$$g(x) = e^x \cos(x) - 1$$

La fonction g est continue et dérivable sur $\mathbb R$ et comme nous avons pour tout x

$$g'(x) = e^{x}(\cos(x) - \sin(x)) = \sqrt{2}e^{x}\cos\left(x + \frac{\pi}{4}\right).$$

cette fonction est aussi strictement monotone sur les intervalles $[\frac{\pi}{4}+k\pi,\frac{5\pi}{4}+k\pi]$, $k\in\mathbb{Z}$.

Exemple 2:

Résoudre sur $\mathbb R$

$$\cos(x)=e^{-x}.$$

La fonction g est continue et dérivable sur $\mathbb R$ et comme nous avons pour tout x

$$g'(x) = e^{x}(\cos(x) - \sin(x)) = \sqrt{2}e^{x}\cos\left(x + \frac{\pi}{4}\right).$$

cette fonction est aussi strictement monotone sur les intervalles $[\frac{\pi}{4}+k\pi,\frac{5\pi}{4}+k\pi]$, $k\in\mathbb{Z}$.

L'étude des signes successifs de $g(\frac{\pi}{4} + k\pi)$ permet alors de localiser les racines.

Exemple 2:

Résoudre sur \mathbb{R}

$$\cos(x)=e^{-x}.$$

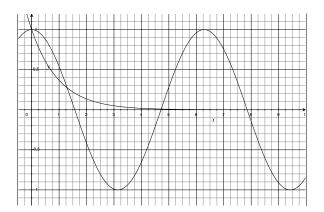
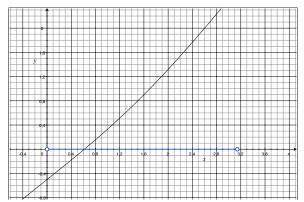
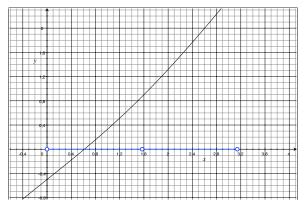


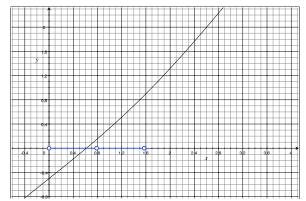
FIGURE - les deux courbes

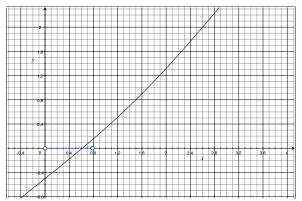
Quelques algorithmes classiques

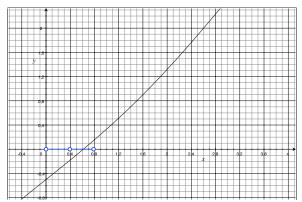


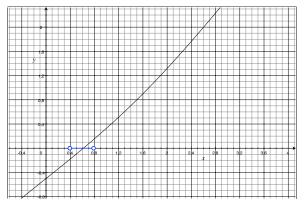












Le principe de la dichotomie

on part d'un intervalle contenant une racine et on construit une suite d'intervalles vérifiant :

- la racine appartient à tous les intervalles
- la longueur des intervalles tend vers 0

On obtient ainsi un encadrement de plus en plus fin de la racine.

un intervalle [a, b] étant défini par ses extrémités a et b, pour définir la suite d'intervalles il est équivalent de définir les suites (a_n) et (b_n) des extrémités des intervalles.

Algorithme de la dichotomie

Soit $f:[a,b]\to\mathbb{R}$ continue et telle que $f(a) f(b) \leq 0$.

$$a_0 = a, \ b_0 = b;$$
pour tous les $n \ de \ 0 \ \grave{a} \ N \ faire$
 $m := \frac{(a_n + b_n)}{2};$
si $f(a) \ f(m) \le 0 \ alors$
 $a_{n+1} := a_n, \ b_{n+1} := m;$
sinon
 $a_{n+1} := m, \ b_{n+1} := b_n;$

Remarques

• dès que f est continue sur [a, b] et que $f(a)f(b) \le 0$, cette méthode converge vers r tel que f(r) = 0.

Remarques

- dès que f est continue sur [a, b] et que $f(a)f(b) \le 0$, cette méthode converge vers r tel que f(r) = 0.
- une seule évaluation de la fonction f est nécessaire par itération

Remarques

- dès que f est continue sur [a, b] et que $f(a)f(b) \le 0$, cette méthode converge vers r tel que f(r) = 0.
- une seule évaluation de la fonction f est nécessaire par itération
- comme nous avons

$$a_n \leq r \leq b_n, \quad \forall n \geq 0$$

on peut choisir indifféremment a_N ou b_N comme valeur approchée de la racine, a_N sera alors une valeur approchée par défaut et b_N une valeur approchée par excès

Remarques

- dès que f est continue sur [a, b] et que $f(a)f(b) \le 0$, cette méthode converge vers r tel que f(r) = 0.
- une seule évaluation de la fonction f est nécessaire par itération
- comme nous avons

$$a_n \le r \le b_n$$
, $\forall n \ge 0$

on peut choisir indifféremment a_N ou b_N comme valeur approchée de la racine, a_N sera alors une valeur approchée par défaut et b_N une valeur approchée par excès

• nous aurons alors une précision de

$$|a_N-r|\leq |a_N-b_N|=\frac{|a-b|}{2^N}$$

Remarques

ullet on peut, en fonction de la précision ϵ souhaitée, déterminer a priori le temps d'arrêt N

$$|a_N - b_N| = \frac{|a - b|}{2^N} < \epsilon$$

$$N \ge E\left(\frac{\ln(|a - b|) - \ln(\epsilon)}{\ln(2)}\right) + 1$$

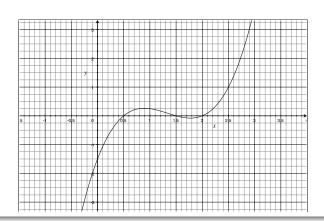
Remarques

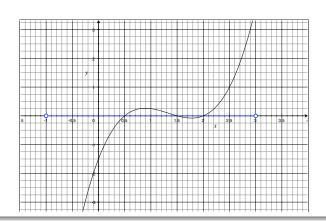
ullet on peut, en fonction de la précision ϵ souhaitée, déterminer a priori le temps d'arrêt N

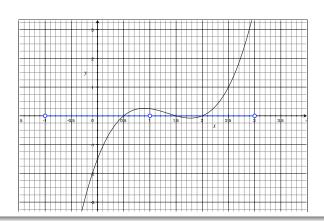
$$|a_N - b_N| = \frac{|a - b|}{2^N} < \epsilon$$

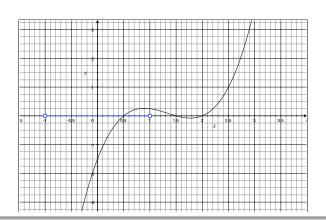
$$N \ge E\left(\frac{\ln\left(|a-b|\right) - \ln\left(\epsilon\right)}{\ln\left(2\right)}\right) + 1$$

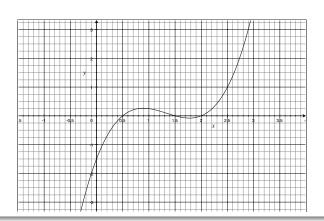
• Cette méthode converge même si la fonction f a plusieurs racines dans l'intervalle de départ.

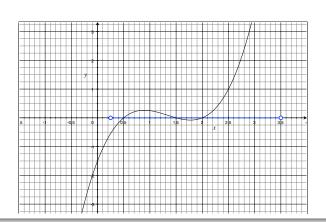


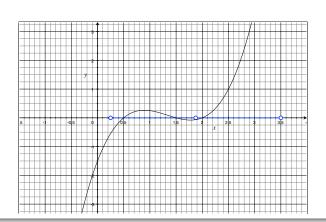


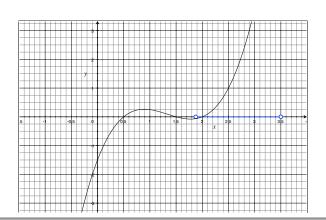












Principe

La recherche d'une solution de l'équation f(x) = 0 peut être vue comme la recherche d'une solution de l'équation

$$g(x) = x$$

Principe

La recherche d'une solution de l'équation f(x) = 0 peut être vue comme la recherche d'une solution de l'équation

$$g(x) = x$$

par exemple en posant :

- g(x) = x f(x)
 - $g(x) = x \frac{f(x)}{\alpha}$, avec $\alpha \neq 0$
 - $g(x) = x \frac{f(x)}{\alpha(x)}$, avec $\forall x \in I$, $\alpha(x) \neq 0$

Principe

La recherche d'une solution de l'équation f(x) = 0 peut être vue comme la recherche d'une solution de l'équation

$$g(x) = x$$

par exemple en posant :

- $g(x) = x \frac{f(x)}{\alpha}$, avec $\alpha \neq 0$
- $g(x) = x \frac{f(x)}{\alpha(x)}$, avec $\forall x \in I, \ \alpha(x) \neq 0$

Ainsi la recherche d'une racine de f se ramène à la recherche d'un point fixe de g.

On peut alors utiliser l'algorithme suivant :

 x_0 donné;

pour tous les n de 0 à ... faire

$$\lfloor x_{n+1} = g(x_n)$$

On peut alors utiliser l'algorithme suivant :

*x*₀ donné;

pour tous les $n de 0 \grave{a} \dots$ faire

En effet, rappelons ce résultat d'analyse :

Théorème

Soient I un intervalle stable par g, a un point de I et (x_n) la suite définie par les relations $x_0 = a$ et pour tout $n \in \mathbb{N}$, $x_{n+1} = g(x_n)$. Si on ajoute les hypothèses I fermé et f continue sur I, alors si la suite (x_n) converge sa limite est un point fixe de g dans I.

Ainsi, si la suite (x_n) générée par cet algorithme converge (et sous ces hypothèses), alors sa limite sera un point fixe de g et donc une racine de f.

Ainsi, si la suite (x_n) générée par cet algorithme converge (et sous ces hypothèses), alors sa limite sera un point fixe de g et donc une racine de f.

La convergence de la suite (x_n) générée par cet algorithme peut être obtenue facilement avec des résultats classiques d'analyse.

Ainsi, si la suite (x_n) générée par cet algorithme converge (et sous ces hypothèses), alors sa limite sera un point fixe de g et donc une racine de f.

La convergence de la suite (x_n) générée par cet algorithme peut être obtenue facilement avec des résultats classiques d'analyse.

La méthode n'est en général pas très robuste et converge lentement.

Vitesse de convergence

Soit (x_n) une suite qui converge vers le nombre r.

Vitesse de convergence

Soit (x_n) une suite qui converge vers le nombre r.

• on dit que la convergence de la suite est linéaire, s'il existe C, 0 < C < 1 tel que

$$\lim_{n\to\infty}\frac{|x_{n+1}-r|}{|x_n-r|}=C.$$
 (1)

Soit (x_n) une suite qui converge vers le nombre r.

on dit que la convergence de la suite est linéaire, s'il existe C,
 0 < C < 1 tel que

$$\lim_{n\to\infty}\frac{|x_{n+1}-r|}{|x_n-r|}=C.$$
 (1)

• le nombre C est appelé vitesse de convergence.

Soit (x_n) une suite qui converge vers le nombre r.

on dit que la convergence de la suite est linéaire, s'il existe C,
 0 < C < 1 tel que

$$\lim_{n\to\infty}\frac{|x_{n+1}-r|}{|x_n-r|}=C.$$
 (1)

- le nombre *C* est appelé vitesse de convergence.
- on dit que la convergence est au moins linéaire, s'il existe C,
 0 < C < 1 tel que

$$|x_{n+1}-r| \leq C |x_n-r| \quad \forall n \geq 0$$

- lorsque (1) est vérifiée pour C = 0, on dit alors que la convergence de la suite est super-linéaire.
 - Dans ce cas, il est possible de préciser la vitesse de convergence
- on dit que la convergence est d'ordre q, s'il existe q>1, C>0 tel que

$$\lim_{n\to\infty}\frac{|x_{n+1}-r|}{|x_n-r|^q}=C$$

on dit que la convergence est d'ordre au moins q, s'il existe q > 1,
 C > 0 tel que

$$|x_{n+1}-r|\leq C|x_n-r|^q$$

• une convergence d'ordre 2 est aussi dite quadratique et une convergence d'ordre 3 est aussi dite cubique.

4 D > 4 A > 4 B > 4 B > B 9 Q C

Signification pratique

Posons pour tout $n \in \mathbb{N}$, $e_n = |x_n - r|$. Le nombre e_n représente l'erreur commise lorsqu'on approche le nombre r par le nombre x_n .

Signification pratique

Posons pour tout $n \in \mathbb{N}$, $e_n = |x_n - r|$. Le nombre e_n représente l'erreur commise lorsqu'on approche le nombre r par le nombre x_n .

• si la convergence est linéaire alors il existe 0 < C < 1 tel que $e_{n+1} \sim Ce_n$

Signification pratique

Posons pour tout $n \in \mathbb{N}$, $e_n = |x_n - r|$. Le nombre e_n représente l'erreur commise lorsqu'on approche le nombre r par le nombre x_n .

- si la convergence est linéaire alors il existe 0 < C < 1 tel que $e_{n+1} \sim Ce_n$
- ceci signifie qu'asymptotiquement l'erreur est réduite d'un facteur *C* à chaque itération.

Signification pratique

Posons pour tout $n \in \mathbb{N}$, $e_n = |x_n - r|$. Le nombre e_n représente l'erreur commise lorsqu'on approche le nombre r par le nombre x_n .

- si la convergence est linéaire alors il existe 0 < C < 1 tel que $e_{n+1} \sim Ce_n$
- ceci signifie qu'asymptotiquement l'erreur est réduite d'un facteur C à chaque itération.
- plus petite sera la vitesse de convergence, plus rapide sera donc la convergence de la suite

Signification pratique

• si la convergence est d'ordre q>1, alors il existe 0< C tel que $e_{n+1}\sim C e_n^q$.

Signification pratique

- si la convergence est d'ordre q > 1, alors il existe 0 < C tel que $e_{n+1} \sim Ce_n^q$.
- posons alors pour tout $n \in \mathbb{N}$, $\lambda_n = -\log_{10} e_n$.

Signification pratique

- si la convergence est d'ordre q > 1, alors il existe 0 < C tel que $e_{n+1} \sim Ce_n^q$.
- posons alors pour tout $n \in \mathbb{N}$, $\lambda_n = -\log_{10} e_n$.
- le nombre λ_n est une "mesure" du nombre de décimales exactes de x_n .

Signification pratique

- si la convergence est d'ordre q > 1, alors il existe 0 < C tel que $e_{n+1} \sim Ce_n^q$.
- posons alors pour tout $n \in \mathbb{N}$, $\lambda_n = -\log_{10} e_n$.
- le nombre λ_n est une "mesure" du nombre de décimales exactes de x_n .
- en effet si $e_n = 10^{-5}$ alors $\lambda_n = 5$, si $e_n = 10^{-10}$ alors $\lambda_n = 10$, etc...

Signification pratique

- si la convergence est d'ordre q > 1, alors il existe 0 < C tel que $e_{n+1} \sim Ce_n^q$.
- posons alors pour tout $n \in \mathbb{N}$, $\lambda_n = -\log_{10} e_n$.
- le nombre λ_n est une "mesure" du nombre de décimales exactes de x_n .
- en effet si $e_n=10^{-5}$ alors $\lambda_n=5$, si $e_n=10^{-10}$ alors $\lambda_n=10$, etc...
- nous avons

$$\lambda_{n+1} \sim q \lambda_n$$
.

ce qui signifie qu'asymptotiquement, le nombre x_{n+1} possède q fois plus de "décimales exactes" que le nombre x_n .

Signification pratique

- si la convergence est d'ordre q > 1, alors il existe 0 < C tel que $e_{n+1} \sim Ce_n^q$.
- posons alors pour tout $n \in \mathbb{N}$, $\lambda_n = -\log_{10} e_n$.
- le nombre λ_n est une "mesure" du nombre de décimales exactes de x_n .
- en effet si $e_n=10^{-5}$ alors $\lambda_n=5$, si $e_n=10^{-10}$ alors $\lambda_n=10$, etc...
- nous avons

$$\lambda_{n+1} \sim q \lambda_n$$
.

- ce qui signifie qu'asymptotiquement, le nombre x_{n+1} possède q fois plus de "décimales exactes" que le nombre x_n .
- plus grand sera l'ordre de convergence, plus rapide sera donc la convergence de la suite

- ◆ロト ◆御ト ◆差ト ◆差ト - 差 - 夕久(

On peut montrer que

$$e_{n+1} = g'(r)e_n + \frac{g''(r)}{2}e_n^2 + \frac{g'''(r)}{6}e_n^3 + o(e_n^3)$$

Plusieurs cas se présentent alors à nous :

On peut montrer que

$$e_{n+1} = g'(r)e_n + \frac{g''(r)}{2}e_n^2 + \frac{g'''(r)}{6}e_n^3 + o(e_n^3)$$

Plusieurs cas se présentent alors à nous :

• si $g'(r) \neq 0$ et |g'(r)| < 1, alors $e_{n+1} \sim Ce_n$ avec C = |g'(r)|. La suite (x_n) converge linéairement vers r.

On peut montrer que

$$e_{n+1} = g'(r)e_n + \frac{g''(r)}{2}e_n^2 + \frac{g'''(r)}{6}e_n^3 + o(e_n^3)$$

Plusieurs cas se présentent alors à nous :

- si $g'(r) \neq 0$ et |g'(r)| < 1, alors $e_{n+1} \sim Ce_n$ avec C = |g'(r)|. La suite (x_n) converge linéairement vers r.
- si g'(r) = 0 et $g''(r) \neq 0$, alors $e_{n+1} \sim Ce_n^2$ avec $C = \frac{|g''(r)|}{2}$. La suite (x_n) est convergente d'ordre 2.

On peut montrer que

$$e_{n+1} = g'(r)e_n + \frac{g''(r)}{2}e_n^2 + \frac{g'''(r)}{6}e_n^3 + o(e_n^3)$$

Plusieurs cas se présentent alors à nous :

- si $g'(r) \neq 0$ et |g'(r)| < 1, alors $e_{n+1} \sim Ce_n$ avec C = |g'(r)|. La suite (x_n) converge linéairement vers r.
- si g'(r) = 0 et $g''(r) \neq 0$, alors $e_{n+1} \sim Ce_n^2$ avec $C = \frac{|g''(r)|}{2}$. La suite (x_n) est convergente d'ordre 2.
- si g'(r) = g''(r) = 0 et $g'''(r) \neq 0$, alors $e_{n+1} \sim Ce_n^3$ avec $\mu = \frac{|g'''(r)|}{\epsilon}$. La suite (x_n) est convergente d'ordre 3.

On peut montrer que

$$e_{n+1} = g'(r)e_n + \frac{g''(r)}{2}e_n^2 + \frac{g'''(r)}{6}e_n^3 + o(e_n^3)$$

Plusieurs cas se présentent alors à nous :

- si $g'(r) \neq 0$ et |g'(r)| < 1, alors $e_{n+1} \sim Ce_n$ avec C = |g'(r)|. La suite (x_n) converge linéairement vers r.
- si g'(r) = 0 et $g''(r) \neq 0$, alors $e_{n+1} \sim Ce_n^2$ avec $C = \frac{|g''(r)|}{2}$. La suite (x_n) est convergente d'ordre 2.
- si g'(r) = g''(r) = 0 et $g'''(r) \neq 0$, alors $e_{n+1} \sim Ce_n^3$ avec $\mu = \frac{|g'''(r)|}{6}$. La suite (x_n) est convergente d'ordre 3.
- et ainsi de suite, si on suppose plus de régularité sur g.

Description de la méthode

• si f est une fonction affine

$$f(x) = ax + b \quad (a \neq 0)$$

alors, il est facile de déterminer la racine : $r = -\frac{b}{a}$.

Description de la méthode

• si f est une fonction affine

$$f(x) = ax + b \quad (a \neq 0)$$

alors, il est facile de déterminer la racine : $r = -\frac{b}{a}$.

 dans le cas général, l'idée est de substituer à la fonction f une approximation affine

Description de la méthode

• si f est une fonction affine

$$f(x) = ax + b \quad (a \neq 0)$$

alors, il est facile de déterminer la racine : $r = -\frac{b}{a}$.

- dans le cas général, l'idée est de substituer à la fonction f une approximation affine
- pour cela nous pouvons utiliser sa tangente.

Description de la méthode

Supposons que f soit une fonction définie sur un intervalle I, dérivable sur I et qu'elle possède une racine r dans I

Description de la méthode

Supposons que f soit une fonction définie sur un intervalle I, dérivable sur I et qu'elle possède une racine r dans I

• soit x_0 un point I assez proche de la racine r

Description de la méthode

Supposons que f soit une fonction définie sur un intervalle I, dérivable sur I et qu'elle possède une racine r dans I

- soit x_0 un point I assez proche de la racine r
- on a alors

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

= $f_{x_0}(x) + o(x - x_0)$

avec
$$f_{x_0}(x) = f'(x_0)(x - x_0) + f(x_0)$$

Description de la méthode

• la fonction affine f_{x_0} admet une racine x_1 si et seulement si $f'(x_0) \neq 0$, et dans ce cas

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Description de la méthode

• la fonction affine f_{x_0} admet une racine x_1 si et seulement si $f'(x_0) \neq 0$, et dans ce cas

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

• on peut espérer alors que x_1 soit plus proche de la racine r que ne l'est x_0 i.e. que x_1 soit une meilleure approximation de r

Description de la méthode

• la fonction affine f_{x_0} admet une racine x_1 si et seulement si $f'(x_0) \neq 0$, et dans ce cas

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

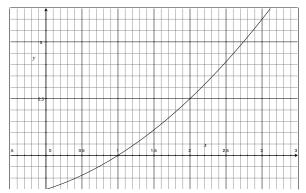
- on peut espérer alors que x_1 soit plus proche de la racine r que ne l'est x_0 i.e. que x_1 soit une meilleure approximation de r
- on peut alors recommencer avec x_1 à la place de x_0 et ainsi de suite ...

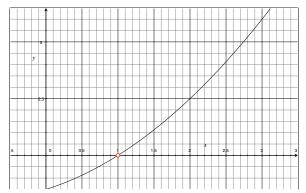
Description de la méthode

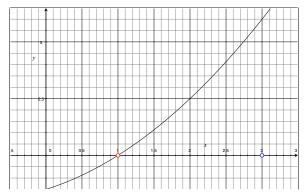
• la fonction affine f_{x_0} admet une racine x_1 si et seulement si $f'(x_0) \neq 0$, et dans ce cas

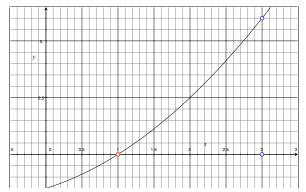
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

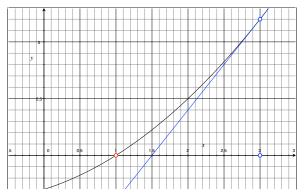
- on peut espérer alors que x_1 soit plus proche de la racine r que ne l'est x_0 i.e. que x_1 soit une meilleure approximation de r
- on peut alors recommencer avec x_1 à la place de x_0 et ainsi de suite ...
- on espère donc améliorer l'approximation de la racine *r* par itérations successives.

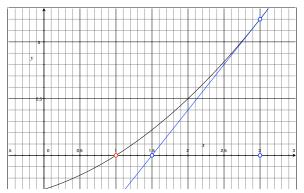


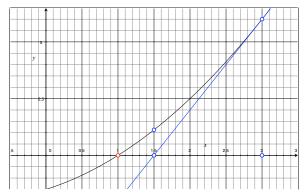




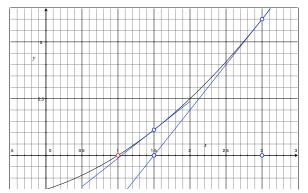




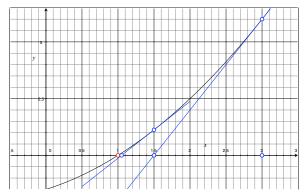




Description de la méthode



Description de la méthode



Algorithme de Newton

x₀ donné;

pour tous les n de 0 à ... faire

Algorithme de Newton

x₀ donné;

pour tous les n de 0 à ... faire

Remarques

• pour que la suite (x_n) soit bien définie, il faut que $f'(x_n) \neq 0$ pour tout $n \in \mathbb{N}$.

Algorithme de Newton

x₀ donné;

pour tous les n de 0 à ... faire

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- pour que la suite (x_n) soit bien définie, il faut que $f'(x_n) \neq 0$ pour tout $n \in \mathbb{N}$.
- à chaque itération, nous devons faire deux évaluations de fonction : calcul de $f(x_n)$ et calcul de $f'(x_n)$

Algorithme de Newton

x₀ donné;

pour tous les n de 0 à ... faire

- pour que la suite (x_n) soit bien définie, il faut que $f'(x_n) \neq 0$ pour tout $n \in \mathbb{N}$.
- à chaque itération, nous devons faire deux évaluations de fonction : calcul de $f(x_n)$ et calcul de $f'(x_n)$
- la méthode de Newton est une méthode de point fixe avec

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Convergence de la méthode de Newton

Théorème

Soient f une application de I dans I et $r \in I$ une racine de la fonction f. On suppose que f est deux fois dérivable sur un voisinage de r et que $f'(r) \neq 0$.

Alors, il existe $\eta > 0$ tel que pour tout $x_0 \in]r - \eta, r + \eta[\cap I]$ la méthode de Newton génère une suite (x_n) qui est bien définie et qui converge au moins quadratiquement vers r.

Convergence de la méthode de Newton

Théorème

Soient f une application de I dans I et $r \in I$ une racine de la fonction f. On suppose que f est deux fois dérivable sur un voisinage de r et que $f'(r) \neq 0$.

Alors, il existe $\eta > 0$ tel que pour tout $x_0 \in]r - \eta, r + \eta[\cap I]$ la méthode de Newton génère une suite (x_n) qui est bien définie et qui converge au moins quadratiquement vers r.

En effet

$$g'(x) = 1 - \frac{(f'(x))^2 - f(x)f'(x)}{(f'(x))^2}$$

et donc g'(r) = 0

Convergence de la méthode de Newton

Convergence de la méthode de Newton

Remarques

• ce résultat indique que si x_0 est choisi assez proche de r (et si $f'(r) \neq 0$) alors la méthode converge

Convergence de la méthode de Newton

- ce résultat indique que si x_0 est choisi assez proche de r (et si $f'(r) \neq 0$) alors la méthode converge
- lorsqu'il y a convergence, elle est rapide (au moins d'ordre 2)

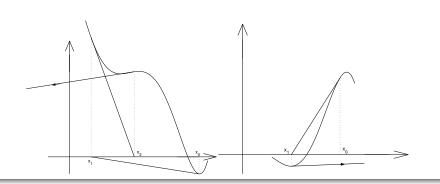
Convergence de la méthode de Newton

- ce résultat indique que si x_0 est choisi assez proche de r (et si $f'(r) \neq 0$) alors la méthode converge
- lorsqu'il y a convergence, elle est rapide (au moins d'ordre 2)
- ullet si x_0 n'est pas choisi assez proche de r, alors il peut y avoir divergence

Convergence de la méthode de Newton

- ce résultat indique que si x_0 est choisi assez proche de r (et si $f'(r) \neq 0$) alors la méthode converge
- lorsqu'il y a convergence, elle est rapide (au moins d'ordre 2)
- ullet si x_0 n'est pas choisi assez proche de r, alors il peut y avoir divergence
- dans la pratique, il n'y a généralement aucun moyen de savoir dans quelle mesure x_0 est assez voisin de r

Convergence de la méthode de Newton



Exemple :
$$x^2 = a$$

Soit $a > 0$

Exemple :
$$x^2 = a$$

Soit a > 0

ullet on cherche à obtenir une approximation de \sqrt{a}

Exemple : $x^2 = a$

Soit a > 0

- on cherche à obtenir une approximation de \sqrt{a}
- ici $f(x) = x^2 a$ et l'algorithme de Newton s'écrit dans ce cas

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Exemple : $x^2 = a$

Soit a > 0

- ullet on cherche à obtenir une approximation de \sqrt{a}
- ici $f(x) = x^2 a$ et l'algorithme de Newton s'écrit dans ce cas

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

on retrouve le fameux algorithme d'Héron ou méthode babylonienne

Exemple : $x^2 = a$

Soit a > 0

- ullet on cherche à obtenir une approximation de \sqrt{a}
- ici $f(x) = x^2 a$ et l'algorithme de Newton s'écrit dans ce cas

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

- on retrouve le fameux algorithme d'Héron ou méthode babylonienne
- on montre facilement que pour tout $x_0>0$ cette suite converge vers \sqrt{a}

4□ > 4□ > 4 = > 4 = > □
9

Exemple :
$$x^2 = a$$

pour $a = 2$ et $x_0 = 1$ on obtient

$$x_0 = 1$$
 $x_1 = \frac{3}{2} = 1.5$
 $x_2 = \frac{17}{12} = 1.41666666666666...$
 $x_3 = \frac{577}{408} = 1.41421568627450...$
 $x_4 = \frac{665857}{470832} = 1.41421356237468...$

Exemple : $x^2 = a$

pour a = 2 et $x_0 = 1$ on obtient

$$x_0 = 1$$

 $x_1 = \frac{3}{2} = 1.5$
 $x_2 = \frac{17}{12} = 1.4166666666666...$
 $x_3 = \frac{577}{408} = 1.41421568627450...$
 $x_4 = \frac{665857}{470832} = 1.41421356237468...$

pour mémoire

$$\sqrt{2} = 1.414213562373095...$$

Remarque

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• la méthode de Newton nécessite à chaque itération deux évaluations de fonction : le calcul de $f(x_n)$ et le calcul de $f'(x_n)$.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- la méthode de Newton nécessite à chaque itération deux évaluations de fonction : le calcul de $f(x_n)$ et le calcul de $f'(x_n)$.
- il faut donc connaître la dérivée de f et être capable d'implémenter un algorithme de calcul de f'

Remarque

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- la méthode de Newton nécessite à chaque itération deux évaluations de fonction : le calcul de $f(x_n)$ et le calcul de $f'(x_n)$.
- il faut donc connaître la dérivée de f et être capable d'implémenter un algorithme de calcul de f'
- pour remédier à cet inconvénient, nous pouvons remarquer que

$$f'(x) \simeq \frac{f(x+h) - f(x)}{h}$$

- 4 ロ ト 4 週 ト 4 速 ト 4 速 ト - 達 - 夕 Q ()

Ainsi, nous pouvons obtenir une méthode assez voisine qui évite le calcul de f':

x₀ donné;

pour tous les n de 0 à ... faire

$$x_{n+1} = x_n - \frac{f(x_n)h_n}{f(x_n+h_n)-f(x_n)}$$

Ainsi, nous pouvons obtenir une méthode assez voisine qui évite le calcul de f':

x₀ donné;

pour tous les n de 0 à ... faire

Remarques

• cette méthode est bien définie si à chaque itération $f(x_n + h_n) - f(x_n) \neq 0$

Ainsi, nous pouvons obtenir une méthode assez voisine qui évite le calcul de f':

 x_0 donné;

pour tous les n de 0 à ... faire

- cette méthode est bien définie si à chaque itération $f(x_n + h_n) - f(x_n) \neq 0$
- le pas de calcul h_n peut être différent à chaque itération

Ainsi, nous pouvons obtenir une méthode assez voisine qui évite le calcul de f':

 x_0 donné;

pour tous les n de 0 à ... faire

- cette méthode est bien définie si à chaque itération $f(x_n + h_n) - f(x_n) \neq 0$
- le pas de calcul h_n peut être différent à chaque itération
- à chaque itération, nous devons toujours faire deux évaluations : calcul de $f(x_n)$ et calcul de $f(x_n + h_n)$

Vers la méthode de la sécante

pour éviter cette double évaluation on peut poser :

$$h_n = x_{n-1} - x_n \quad \forall n \geq 0$$

En effet, si (x_n) converge, alors (h_n) converge vers 0 et à chaque itération nous avons seulement une évaluation à faire : calcul de $f(x_n)$ (si l'algorithme est correctement écrit!)

pour tous les $n de 0 \grave{a} \dots$ faire

Vers la méthode de la sécante

pour éviter cette double évaluation on peut poser :

$$h_n = x_{n-1} - x_n \quad \forall n \geq 0$$

En effet, si (x_n) converge, alors (h_n) converge vers 0 et à chaque itération nous avons seulement une évaluation à faire : calcul de $f(x_n)$ (si l'algorithme est correctement écrit!)

pour tous les $n de 0 \grave{a} \dots$ faire

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

nous venons d'obtenir la méthode de la sécante

Description de la méthode

Supposons que f soit une fonction définie sur un intervalle I et qu'elle possède une racine r dans I

Description de la méthode

Supposons que f soit une fonction définie sur un intervalle I et qu'elle possède une racine r dans I

• soient x_0 et x_1 deux points de I assez proches de la racine r

Description de la méthode

Supposons que f soit une fonction définie sur un intervalle I et qu'elle possède une racine r dans I

- soient x_0 et x_1 deux points de I assez proches de la racine r
- nous substituons au voisinage de x_1 la fonction f par la droite passant par les points $(x_1, f(x_1))$ et $(x_0, f(x_0))$ d'équation

$$f_{x_1}(x) = \left(\frac{f(x_1) - f(x_0)}{x_1 - x_0}\right)(x - x_1) + f(x_1)$$

Description de la méthode

• la fonction affine f_{x_1} admet une racine x_2 si et seulement si $f(x_1) - f(x_0) \neq 0$, et dans ce cas

$$x_2 = x_1 - f(x_1) \left(\frac{x_1 - x_0}{f(x_1) - f(x_0)} \right)$$

Description de la méthode

• la fonction affine f_{x_1} admet une racine x_2 si et seulement si $f(x_1) - f(x_0) \neq 0$, et dans ce cas

$$x_2 = x_1 - f(x_1) \left(\frac{x_1 - x_0}{f(x_1) - f(x_0)} \right)$$

 on peut espérer alors que x₂ soit plus proche de la racine r que ne le sont x₀ et x₁

Description de la méthode

• la fonction affine f_{x_1} admet une racine x_2 si et seulement si $f(x_1) - f(x_0) \neq 0$, et dans ce cas

$$x_2 = x_1 - f(x_1) \left(\frac{x_1 - x_0}{f(x_1) - f(x_0)} \right)$$

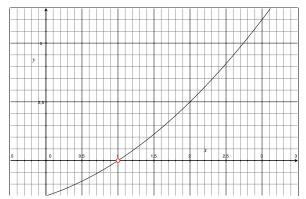
- on peut espérer alors que x₂ soit plus proche de la racine r que ne le sont x₀ et x₁
- on peut alors recommencer avec x_2 et x_1 et ainsi de suite ...

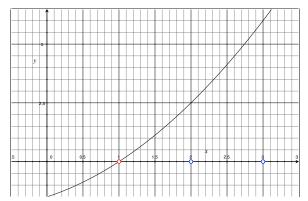
Description de la méthode

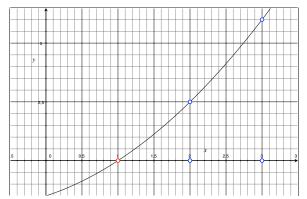
• la fonction affine f_{x_1} admet une racine x_2 si et seulement si $f(x_1) - f(x_0) \neq 0$, et dans ce cas

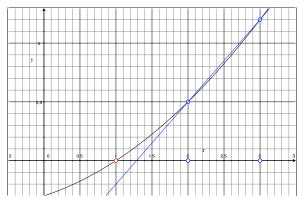
$$x_2 = x_1 - f(x_1) \left(\frac{x_1 - x_0}{f(x_1) - f(x_0)} \right)$$

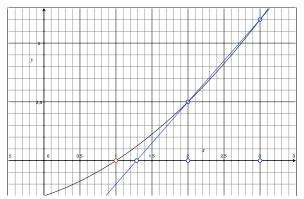
- on peut espérer alors que x₂ soit plus proche de la racine r que ne le sont x₀ et x₁
- on peut alors recommencer avec x_2 et x_1 et ainsi de suite ...
- on espère donc améliorer l'approximation de la racine *r* par itérations successives.

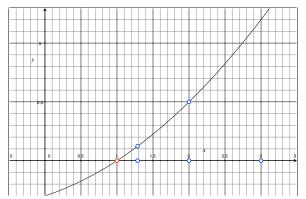


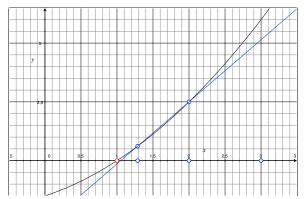


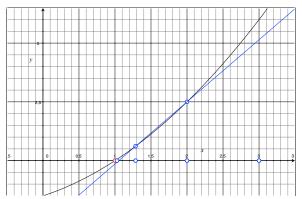












Algorithme de la sécante

 x_0 x_1 donnés;

pour tous les n de 0 à ... faire

$$x_{n+1} = x_n - f(x_n) \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Algorithme de la sécante

 $x_0 x_1$ donnés;

pour tous les n de 0 à ... faire

$$x_{n+1} = x_n - f(x_n) \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Remarques

• pour que la suite (x_n) soit bien définie, il faut que $f(x_n) \neq f(x_{n-1})$ pour tout $n \in \mathbb{N}$.

Algorithme de la sécante

 $x_0 x_1$ donnés;

pour tous les n de 0 à ... faire

$$x_{n+1} = x_n - f(x_n) \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Remarques

- pour que la suite (x_n) soit bien définie, il faut que $f(x_n) \neq f(x_{n-1})$ pour tout $n \in \mathbb{N}$.
- à chaque itération, nous devons faire une unique évaluation : calcul de $f(x_n)$

Convergence de la méthode de la sécante

Théorème

Soient f une application de I dans I et $r \in I$ une racine de la fonction f. On suppose que f est deux fois continument dérivable sur un voisinage de r et que $f'(r) \neq 0$.

Alors, il existe $\eta>0$ tel que pour tout $x_0\in]r-\eta, r+\eta[\cap I$ et pour tout $x_0\in]r-\eta, r+\eta[\cap I$ la méthode de la sécante génère une suite (x_n) qui est bien définie et qui converge vers r.

Dans ce cas la convergence est au moins d'ordre $\frac{1+\sqrt{5}}{2}=1.618...$

Comparaison des algorithmes

Méthode de dichotomie

Avantages :

- la convergence est assurée
- un seul calcul de fonction à chaque itération

Inconvénients

• vitesse de convergence linéaire, donc lente

Méthode de Newton

Avantages:

- converge très rapidement lorsqu'il y a convergence
- relativement stable et peu sensible aux erreurs d'arrondis si f'(r) n'est pas trop petit

Inconvénients

- peut diverger si la donnée initiale est mal choisie
- nécessite le calcul de la dérivée de la fonction
- deux évaluations de fonctions à chaque itération

Méthode de la Sécante

Avantages:

- convergence relativement rapide lorsqu'il y a convergence
- nécessite une seule évaluation de fonction à chaque itération

Inconvénients

• peut diverger si la donnée initiale est mal choisie

Un exemple : résolution de $x-0.2\sin x-0.5=0$ à l'aide des quatre algorithmes

	Dichotomie	Sécante	Newton	Point fixe
	$x_{-1} = 0, 5$	$x_{-1} = 0, 5$	$x_0 = 1$	$x_0 = 1$
	$x_0 = 1, 0$	$x_0 = 1, 0$		$x=0, 2\sin x + 0, 5$
1	0, 75	0, 5	0,5	0, 50
2	0, 625	0, 61212248	0,61629718	0, 595885
3	0, 5625	0, 61549349	0,61546820	0, 612248
4	0, 59375	0,61546816	0,61546816	0, 614941
5	0, 609375			0, 61538219
6	0, 6171875			0, 61545412
7	0, 6132812			0, 61546587
8	0, 6152343			0, 61546779
9	0, 6162109			0, 61546810
10	0, 6157226			0, 61546815
11	0, 6154785			
12	0, 6153564			
13	0,6154174			
14	0, 6154479			
15	0, 6154532			
16	0, 61547088			
17	0, 61546707			
18	0, 61546897			
19	0, 615468025			
20	0,615468502			

Systèmes d'équations non linéaires

Description du problème

soit l'équation

$$F(X) = 0$$

où $F:\mathbb{R}^N\mapsto\mathbb{R}^N$ ou encore de façon développée

$$\begin{cases} f_1(x_1, x_2, \dots, x_N) &= 0 \\ f_2(x_1, x_2, \dots, x_N) &= 0 \\ \vdots &\vdots \\ f_N(x_1, x_2, \dots, x_N) &= 0 \end{cases}$$

 la méthode de Newton-Raphson est la généralisation de la méthode de Newton unidimensionnelle aux dimensions supérieures

$$x_{n+1} = x_n - (f'(x_n))^{-1} f(x_n)$$

• elle fait intervenir la matrice Jacobienne de F :

$$F'(X_n) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \cdots & \frac{\partial f_N}{\partial x_N} \end{pmatrix}$$

toutes les dérivées partielles étant évaluées au point X_n .

 la méthode de Newton-Raphson est la généralisation de la méthode de Newton unidimensionnelle aux dimensions supérieures

$$x_{n+1} = x_n - (f'(x_n))^{-1} f(x_n)$$

• elle fait intervenir la matrice Jacobienne de F :

$$F'(X_n) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \cdots & \frac{\partial f_N}{\partial x_N} \end{pmatrix}$$

toutes les dérivées partielles étant évaluées au point X_n .

• La méthode de Newton-Raphson s'écrit donc formellement

$$X_{n+1} = X_n - [F'(X_n)]^{-1}F(X_n)$$

Dans la pratique, on ne calcule pas explicitement l'inverse de la matrice Jacobienne, ce qui s'avèrerait trop coûteux, et on préfère écrire l'algorithme sous la forme suivante :

 X_0 donné;

pour tous les n de 0 à ... faire

Résolution du système linéaire $F'(X_n)\delta_n = -F(X_n)$;

$$X_{n+1}=X_n+\delta_n;$$

Remarques:

• encore plus qu'en dimension 1, le choix de l'initialisation est crucial et le risque de divergence, si on ne démarre pas à proximité de la solution cherchée, est grand.

Remarques:

- encore plus qu'en dimension 1, le choix de l'initialisation est crucial et le risque de divergence, si on ne démarre pas à proximité de la solution cherchée, est grand.
- la convergence est là aussi d'ordre 2, donc très rapide (quand il y a convergence!)

Remarques:

- encore plus qu'en dimension 1, le choix de l'initialisation est crucial et le risque de divergence, si on ne démarre pas à proximité de la solution cherchée, est grand.
- la convergence est là aussi d'ordre 2, donc très rapide (quand il y a convergence!)
- la méthode de Newton-Raphson s'avère assez coûteuse puisqu'il faut à chaque itération
 - évaluer $N^2 + N$ fonctions (les N^2 dérivées partielles de la matrice Jacobienne, plus les N fonctions coordonnées)
 - résoudre un système linéaire $N \times N$ (dont la matrice est en général pleine)
 - méthode approchée (type sécante) appelée quasi-Newton (Broyden).